Twitter Employee Clusters

By: Jeff Clark    Date: Thu, 25 Jun 2009

Here is a different view of the relationships between the Twitter employee accounts first presented in this post. I measured the similarity between all the twitter employee accounts based on the overlap in vocabulary used in their last 200 tweets. A clustering algorithm was then used to group them together based on the pairwise similarity scores. The algorithm was tuned to limit clusters to have a maximum of 8 members.

The image below was created from the cluster members data, the similarity between clusters, and the similarity within each cluster. To minimize line clutter I am only drawing a connection if it is one of the top 2 strongest for either end node. The clustering and layout code is based on what I used for the Toronto Twitter Community project but has been recently enhanced to support some new client work.

Here is the PDF version of the Twitter Employee Clusters.


Shaped Word Search - Twitter
Twitter Venn: Celebrity Deaths